User Manual

 bidirectional Multifunctional-Counter
VersaCount" ${ }^{\text {" }}$

Table of Contents

1 General Information 6
1.1 Information about the Operating Instructions 6
1.2 Explanation of symbols 7
1.3 Limitation of Liability 8
1.4 Copyright protection 9
1.5 Guarantee conditions 9
1.6 Customer Service11
2 Safety 10
2.1 Intended Use (Proper Use) 10
2.2 Assembly, connecting, programming 11
2.3 Responsibilities of the machine/plant manufacturer and operator 13
2.4 Staff-related requirements 14
2.5 Special hazards 15
2.6 Safety devices 16
3 Setup and Operation 17
3.1 Dimension Sheet / Multifunction Counter Installation 18
3.2 Connecting the Multifunction Counter 18
3.3 Display 20
3.4 Keyboard functions 21
3.5 Overview of Operating Elements 23
3.6 Programming the Standard Function 24
3.7 Programming the Function Codes 25
3.8 Programming the Preset Modes 26
3.9 Prescaler Programming 28
3.10 Programming the (User) Times 29
3.11 Output of ID Data 30
3.12 Adjusting the intensity of the backlight 31

Table of Contents

4 General Description of Multifunctional Counter 32
5 Pulse Counter 37
5.1 Description of Pulse Counter 37
5.2 Signal diagrams - counter input signals 38
5.3 Signal diagrams - counter output signals 40
5.4 Programming the counter function codes 42
6 Tachometer 54
6.1 Tachometer description 54
6.2 Signal diagrams - tachometer 55
6.3 Programming the tachometer function codes 56
7 Timer 65
7.1 Timer description 65
7.2 Signal diagram - timer input signals 67
7.3 Signal diagrams - timer output signals 68
7.4 Programming the timer function codes 69
8 Shift Counter 82
8.1 Shift counter description 82
8.2 Scroll between Total Sum and Partial Sums 83
8.3 Signal diagrams - shift counter input signals 83
8.4 Signal diagrams - shift counter output signals 84
8.5 Programming the shift-counter function codes 85
9 Batch Counter 96
9.1 Batch counter description 96
9.2 Signal diagrams - batch counter 97
9.3 Programming the batch counter function codes 97
10 Technical Data 110
11 Transport, Packaging, Storage 117
12 Maintenance and cleaning 117
13 Malfunctions 118
14 Spare Parts 120
15 Dismantling and Disposal 120
16 Ordering Information 121
17 Accessories and spare parts 122
18 Supplementary information relating to the users' manual 124

General Information
 1 General Information

1.1 Information about the Operating Instructions

These operating instructions provide important information about the handling of the multifunctional counter. To ensure safe operation it is vital that the safety information and instructions be strictly observed.

For Counters with interfaces VersaCount 773 and VersaCount 774 please see attached the amendment "Supplementary information relating to the users' manual" (page 123)

The multifunctional counter has been designed for industrial use and for installation in machinery or industrial plants.

The manufacturer of the machine/plant in which the multifunctional counter is used has to ensure that the function of the counter is properly described in the Operating Instructions of the machine or plant, and that the description is in accordance with manufacturer's programming functions.

The manufacturer's safety rules shall be applicable.
In addition, the local regulations concerning the prevention of accidents and general safety information applicable to the machinery/plant shall be adhered to.
Before starting any work on the machine/plant, the operating instructions and in particular, the Safety chapter and the respective safety information must be fully read.
These operating instructions are an integral part of the product and must be maintained in the direct vicinity of the machine/plant and in a place that is readily accessible for the operating staff.

These operating instructions contain important information concerning the installation, connection and programming of the multifunctional counter.

General Information

Description of the programming sequence:

- Programming of the basic functions
- Programming of the function codes
- Programming of the user times
- Programming of the prescaler
- Programming of the presettings

Before starting to run the machine/plant, all functions that are not allowed to be changed by the operator have to be blocked.

The executed programming functions have to be documented.

1.2 Explanation of symbols

The warnings in these operating instructions are designated by symbols. Signal words at the beginning of the warnings indicate the severity of a safety hazard.

These notes have to be observed by all means, and all actions have to be taken with utmost care so as to prevent any accidents or damage or personal injury.

Danger!
 This warning indicates a direct safety hazard, which may lead to serious injuries or even death if preventative action is not taken.

Warning!

This warning indicates a possible safety hazard, which may lead to serious injuries or even death if preventative action is not taken.

General Information

1

Caution!
 This warning indicates a possible safety hazard, which may lead to minor damage or injuries if preventative action is not taken.

Note!

This symbol indicates a potentially hazardous situation, which may lead to damage to property or to the environment if preventative action is not taken.

O Tips and recommendations This symbol is used to point out to useful tips and recommendations and information ensuring efficient and trouble-free operation.

1.3 Limitation of Liability

The information and notes contained in these operating instructions were gathered in accordance with the applicable standards and regulations, the state-of-the-art, as well our long-standing experience and know-how.

The manufacturer shall not assume any liability for damage caused by:

- Non-adherence to the operating instructions
- Improper use
- Employment of unskilled or untrained personnel
- Makeshift changes or manipulation
- Opening of the multifunctional counter

As a result of special design versions, special ordering options or the latest technical developments, the actual scope of delivery may deviate from the scope described and illustrated here.

General Information

1.4 Copyright protection

The operating instructions must be treated confidentially and used exclusively by the personnel responsible for the setup, maintenance, repair and operation of the machine/plant. Disclosure of these operating instructions to any third parties shall not be permissible without the prior written consent of the manufacturer.

O The data and information stated here, including text, drawings, images and other illustrations, are protected by copyrights and subject to industrial property rights. Any misuse of such information shall be subject to prosecution.

1.5 Guarantee conditions

Our standard warranty is available on our website at www.veeder-rootcounters.com.

1.6 Customer Service

Our customer service is available to provide technical information and assistance for our customers. Detailed information on your responsible contact partner is given on our homepage (www.veeder-rootcounters.com).

Safety

2 Safety

This section provides an overview of all the important safety-relevant aspects to ensure best possible protection of the operating personnel as well as safe and trouble-free operation. Non-adherence to the instructions given in this manual may result in considerable safety hazards.

2.1 Intended Use (Proper Use)

The multifunctional counter is exclusively designed and constructed for the intended use and purposes described here.

The multifunctional counter serves together with a corresponding sensor for the counting of piece numbers, lengths, flow rates, velocities and times, as well as for the controlling and monitoring of machinery and equipment by sending control signals.

> Warning!
> Safety hazards due to improper use / misuse! Using the multifunctional counter for any purposes other than the ones described within the scope of intended use may cause hazardous situations. Claims for damages resulting from any kind of misuse shall be expressly excluded.

2.2 Assembly, connection, programming

These multifunctional counters are built and tested in accordance with IEC/EN 61010-1, Protection Class II - Safety Measures for Electronic Measuring Equipment. They have left the factory in a condition that is in compliance with all safety-relevant requirements. In order to maintain this condition and ensure operational safety, the User is requested to observe the safety notes and warnings given in these operating instructions!

Danger!

Risk of safety hazards due to incorrect/faulty assembly and connection.

- The max. operating voltages must not be exceeded!
- $12-24 \mathrm{VDC}$ and 24VAC multifunctional counters have to be operated at safety extra-low voltages (SELV) and under potential-compensated conditions in order to prevent hazardous shock currents.
- An external fuse has to be provided to protect the multifunctional counter (see Chapter 10, Technical Data).
- Installation and assembly shall be carried out by skilled and trained electricians only.
- Do not connect the multifunctional counter without making sure that it no longer carries any live voltages. Always separate it from the mains supply before connecting.
- Make sure that live terminals are properly protected against inadvertent contact.
- To ensure proper protection of terminals against hand contact, make sure that the live conductors are properly connected to the terminals.
- It's not allowed to use the multifunctional counter outside of the specified temperature range. If neccessary appropriate precoutions have to be applied

Safety

(e.g. air ventilation). \bullet The rules and regulations set forth by the local electricity providers have to be observed.

- Do not establish any connections with non-allocated (NC) terminals.
- Multifunction counters may only be operated in a properly installed condition.
- If safe operation seems to be impaired, make the multifunctional counter inoperable and secure it against inadvertent operation.
- Scope of applications: industrial processes and controls. Overvoltage across the terminals must be limited to the values of overvoltage category II.
- The installation and wiring environment has considerable impact on the electromagnetic compatibility of the multifunctional counter. Therefore, electromagnetic compatibility of the entire plant has to be ensured during the installation.
- In areas presenting the risk of ESD (electrostatic discharge), make sure to use ESD-protected plugs and switches during the installation.
- If the functions "prescaler input", "preset input" and "key reset" are not allowed to be used by the machine/plant operator, access to these functions must be blocked for machine operators. Depending on the machine/plant design or concept, non-permissible input may impair the operational safety and function of the machine or plant.

Danger!
 The manufacturer of the machines / plants has to ensure, that no risks result from this.

- The machine/plant manufacturer shall be responsible for the preparation of operating instructions / plant description including the following:
- Description of functions according to the programming of the multifunction counter;
- Description of the settings to be adjusted by the machine/plant operator;
- Information concerning the occupational safety requirements and possible hazards arising from the operation of the machine/plant.

2.3 Responsibilities of the machine/plant manufacturer and operator

Multifunctional counters are designed for installation in machines/plants. Therefore, the manufacturer and operator of the machine/plant are subject to the legal obligations concerning occupational safety and health.

Besides the safety notes given in these operating instructions, the relevant rules and regulations concerning safety and the prevention of accidents, and the applicable environmental requirements have to be met. In particular:

- The machine/plant manufacturer shall be obligated to ensure that all the requirements mentioned in section 2.2 be fulfilled during the assembly, connection and programming.
- The operator shall obtain all the required information about the applicable occupational safety rules. In addition, the operator shall be obligated to prepare a risk assessment of possible hazards that may arise due to the special working conditions at the place of installation of the machine/plant. This risk assessment shall be documented in the form of operating instructions for the machine/plant.
- Throughout the entire operating time of the machine/plant the operator shall be obligated to check if the operating instructions prepared are in accordance with the latest status of requirements and, if required, make the appropriate adjustments.

Safety

- The operator shall ensure that all staff members who are involved in the machine/plant operation have read and fully understood these instructions. Moreover, the operator shall be obligated to train the operating personnel at regular intervals and inform them about any potential hazards.
- The operator shall ensure that the operation and cleaning of the machine/ plant is exclusively carried out by skilled and trained personnel.
- The operator shall ensure that all maintenance and repair work shall only be carried out by skilled and trained personnel.

2.4 Staff-related requirements

1 Warning:
 Danger of personal injuries if handled by insufficiently qualified staff! Improper handling may cause severe personal injuries and damage to property.

- Actions requiring special skills have to be carried out only by the personnel designated in the appropriate sections of these instructions.
- Keep unqualified personnel away from hazard areas.

The following staff qualification requirements have been defined for the various scopes of activities:

- Instructed personnel

These persons have been instructed by the operator with regard to the tasks assigned and the potential hazards caused by improper handling.

- Skilled personnel

Due to their educational and professional skills, know-how and experience, as well as due to their knowledge of the relevant regulations, these persons are capable of executing their assigned tasks and recognize potential hazards independently.

- Skilled and trained electricians

Due to their educational and professional skills, know-how and experience, and due to their knowledge of the relevant regulations in the field of electrical engineering, these persons are capable of executing electrical work and recognizing potential hazards independently.

2.5 Special hazards

This section indicates certain residual risks, which may arise as a result of the risk assessment.

The safety information and warnings given here and in the following chapters of these instructions have to be observed in order to reduce any health hazards and avoid hazardous situations.

Electric current

Danger!

Lethal hazard of electric shock!
Any contact with hazardous live components presents a direct lethal hazard.
Damages of the insulation or individual components present a potential lethal hazard.

- In the event of any damage to the insulation, immediately disconnect the voltage supply and initiate the appropriate repair work.
- Any work on the electrical plant has to be carried out by skilled and trained electricians only.
- Before commencing your work on the electrical system, disconnect it from the main supply and check that it no longer carries any live voltages.

Safety

- Prior to conducting any maintenance, cleaning or repair work, disconnect the mains supply and secure it against inadvertent switching on.
- Do not short-circuit or make fuses inoperable.

2.6 Safety devices

!

> Warning! Lethal hazard by non-functional safety devices! Safety devices are provided to ensure a maximum of operational safety.

The multifunctional counter itself does not include any installed safety devices.
These safety devices have to be attached externally.
Protect the electrical supply of the multifunctional counter by means of external fuses (see Chapter 10, Technical Data).

Whether or not additional safety devices (e.g. emergency-off buttons) have to be provided depends on the general design and construction of the machine or plant.
The machine/plant manufacturer shall be responsible for providing such additional safety devices in according with his own risk assessment.

Safety

3 Setup and Operation

1 Display
2 Operating keys
3 Flat gasket
4 Bracket
5 Enclosure
6 Plug for DC or sensor supply; Electronic inputs and outputs

7 Connection terminal AC supply and relay contacts
8 Circuit diagram

Safety

3.1 Dimension Sheet /
 Installation of Multifunction Counter

3.2 Connecting the Multifunctional Counter

2772020

1 dc -supply ext. Fuse	16-
2 ov	
3 input A	max 250, 14-
4 Input B	Out Rel 2
5 input C	
6 Application input/outp.	$\max ^{250 v} 11-$
7 OUT1_Tr, 12-30VDC/50mA	nc 10
8 OUT2_Tr, 12-30VDC/50mA	Nc 9

VDC 2 relays / 2 transistors

$$
2772021
$$

1 DC-SUPPLY ext. Fuse
2 ov

$$
\begin{aligned}
& \text { nc } 16 \\
& \text { Nc } 15
\end{aligned}
$$

3 input A
4 input B
5 input C
6 Application inputioutp.
7 OUT1_Tr, 12-30vDC/50mA
8 out2_Tr, 12-30VDC/50mA

1 Sensor 12-24VDC max 50 mA
2 ov
3 input A
4 input B
5 inputc
6 Application inputioutp.
7 OUT1_Tr, 12.24VDC/30mA
8 out2_Tr, 12-24VDC/30mA

2772045

Out Rel 2 $30 \mathrm{VDC}=-5 \mathrm{FA}$ 250VAC-i5A $\max _{250 \mathrm{~V}} 11-$ AC-Supply $10-$ extern. Fuse $9-$

VAC Trafo 2 relays / 2 transistors

1Sensor 12-24VDC	2772046	NC 16
max 50 mA		

Setup and Operation

The plug has to be disconnected from the counter before the cables are fastened by means of screws or screw-type terminals.

It is not allowed to contact the encoder to a direct current line voltage without protective circuit for EMC. For cable lengths $>30 \mathrm{~m}$ a protective circuit is always necessary!

When programming the input level to TTL an additonal protective circuit is necessary.

We recommend the installation in an metallic environment.

Setup and Operation

Only valid for DC-Versions:

When switching on the device in PNP-Mode, a short signal is applied to inputs A, B, C and the application input.

To suppress the pulse in TTL-Mode each input has to be connected to a resistor of $10 \mathrm{kOhm} / 0,125 \mathrm{~W}$ against 0 V .

When switching on the device a short signal is applied to the application output.

This pulse, if needed, is possible to suppress by connecting a resistor of 10 kOhm / 0,225 W against 0 V to the application-output.

3.3 Display

After switching on, all segments and characters are illuminated for approx. 2 seconds; then the display changes over to the Display or Programming Mode.

The display is available in five different versions: Reflectiv: black figures on bright reflecting background Transflective positive: black figures on back lighted ground Transmissive white: white figures on black ground Transmissive red: red figures on black ground Transmissive green: green figures on black ground

Setup and Operation

During the Programming of Function Codes

E	P		
Enter - Key	UP - Key	Down - Key	SHIFT - Key

Programming

If pressed together with POWER ON (keep keys pressed and switch on the device)

E	$+\boldsymbol{A}$	Selects standard functions
E	$+\square$	Sets function codes
E	$+\square$	Selects ID data (Article code (ID No.), manufacturing date, serial number,...)
$\boldsymbol{E}+\square$	Sets User Times	

During the Programming of Function Codes

$\boldsymbol{\sim}+\square$	Display of function code Switches between function code text and function code number

During Operation

- +	Reset
$E+>$	Sets preset 0
E	Sets preset 1
E	Sets preset 2
- +	Sets prescaler

Setup and Operation

Additional function for shift and batch counters

∇	Switches between total sum and partial sums and/or count value and totalizer or batch counter

Additional function for timers

A	Timer start (If enabled with function code F15)
Additional function backlight versions	
(If enabled with function code F15)	

Setup and Operation

3.5 Overview of Operating Elements

Setup and Operation

3.6 Programming the Standard Function

The device described here is a multifunctional counter, which can be programmed for a variety of functions, i.e. pulse counter, tachometer, timer, shift counter or batch counter functions. The first step is to set the standard function (the factory setting of the device is the "pulse counter" setting).

Now continue with the programming of the function codes (Chapters 5-9) or User Times (Chapter 3.10)

Programming mode	Change function setting:	Save, return to counter operation
$\mathbf{E}+$ or	E press	
Keep pressed and switch voltage on simultaneously	press	

Function code Fn, Display Row 1F MMEL

Function	No.Display Row 2	
Setting of Standard	0^{*}	PivLSLE

1 EAEHR日 Tachometer
2 EIMES日 Timer
3 5HIFEL Shift Counter
4 bRLGHE Batch Counter

Setup and Operation

3.7 Programming the Function Codes

The function codes (system parameters) are used to program the function and behavior of the inputs and outputs, as well as the behavior of the device in its adjusted basic mode. The detailed selection options are described in Chapters 5 to 9 .

Programming mode	Change function setting	Save and change to next function code	Save and change to counter operation
			E
Keep pressed and switch voltage on simultaneously	press	press	press

Change between Text Display and Numerical Display

In the function code Programming Mode, the first row shows the name of the function code in the form of text (7-segment display). The second row shows the selectable option in a text form, too. By simultaneously pressing the Up and Down buttons, the display in the first row changes to a numerical display; after pressing these buttons once again, the display in the second row also changes to a numerical display. Pressing these buttons for a third time reverts both rows to the text display again.

Setup and Operation

i

Attention: With each change among text and numeric display, the currently activated function code will return to the factory setting and may have to be readjusted.

The factory setting is designated with an asterix *.

3.8 Programming the Preset Values

By simultaneously pressing the E + Up, E + Down or E + Shift key you can change to the Preset programming mode:

Use the shift key in the programming mode to change a setting position. The selected position will start to flash. Use the shift key again to move by one position to the right. Then use the UP or Down key to increment or decrement the position by 1 .

Rule for the 6th position: The change from 9 to 0 or 0 to 9 is indicated by a changing prefix.

Use the E key to leave the programming mode and return to the display mode. Your entries will be saved.

On leaving the programming mode, the presets are tested for attainability and recalculated, if necessary, because not all the values may be attained at a prescaler value of >1. The presetting is then rounded to the next attainable value.

If no key is pressed for more than 16 seconds in the programming mode, the counter will automatically return to the display mode. In this case, however, no entries will be saved except the last value saved with the E-key.

Set the preset value to 0 by pressing Up and Down keys simultaneously.

Setup and Operation

Setup and Operation

3.9 Prescaler programming

By pressing the Up + Shift keys simultaneously you can change to the Prescaler Programming Mode.

In the Programming mode, the position to be changed is selected by means of the shift key. The selected position will start flashing. Use the shift key again to move by one position to the right. Then use the UP or Down key to increment or decrement the position by 1 . It is not possible to save a value of 00,0000 . In this case the system will save 01,0000.

Use the E key to leave the programming mode and return to the display mode. Your entries will be saved.

On leaving the programming mode, all the presets are recalculated because not all the values may be attained with a prescaler value of >1. Therefore, the presets have to be checked and corrected as necessary after saving the prescaler.

If no key is pressed for more than 16 seconds in the programming mode, the counter will automatically return to the display mode. In this case, however, no entries will be saved except the last value saved with the E-key.

Press the Up and Down keys simultaneously to set the prescaler to 01,0000 .

Programming mode	select a position: (starts flashing) press	Set position	Save and return to display mode
$\Delta+\square$		or	E
press		press	press
		7 74%	Set prescaler
,	set to 01,0000		

Setup and Operation

3．10 Programming the user times

For programming the signal time for monostable output signals， 9 fixed signal times between 0.02 s and 10 s are available．In addition，three different signal times between $0,01 \mathrm{~s}$ and $599,99 \mathrm{~s}$ can be set by the user．The outputs are deactivated if the setting is 0.00 s ．

Programming mode	Select a position	Set position	Save and go to the next user setting；after user 3，return to dis－ play mode
Keep pressed and switch voltage on simultaneously	press	press	press

Function code Fn，Display－Row 1 ת

Function No． | Display |
| :--- |
| Row 2 |

Times 1 リラETコ Signal time 2

2 MラE「コ Signal time 3

Setup and Operation

3．11 Output of ID data

This function is used to retrieve ID data，e．g．article numbers and various ma－ nufacturing data．

Output mode E＋ Keep pressed and switch voltage on simultaneously	Change to the next output press	Return to counter ope－ ration E press
Display row 1	Display row 2	
FーEGME	Article number	
日	Manufacturing date	
בET．TE	Serial number	
■』円円ロ	Software number	
口回「E！	Software release	

Setup and Operation

3.12 Adjusting the intensity of the backlight

For counters that come with a backlight you have the possibility to adjust the intensity of their backlight.

To get into the menu of the adjustment, you have to press SHIFT for more than 5 seconds. The display then shows:

By pressing the UP or DOWN key the display gets brighter or darker.
If the E-button is pressed within 15 s , you go back to the normal counter display and the adjusted setting is saved. If the E-button is not pressed within 15 seconds, you will go back automatically to the normal counter menu without saving any made changes.

Go to the adjustment menu	Adjustment of the in- tensity	Save and going back to display mode
pressing $>5 \mathrm{~s}$	press	Pressing within 15 s

General description of multifunctional counter 4 General description of multifunctional counter

The following description is applicable for all standard settings. Special descriptions can be found in the appropriate chapters of this manual.

Factory setting
 (Defaults)

Sets all the function codes to the factory settings, i.e. all codes designated with *.

Prescaler (pulse metering factor):

The "Prescaler" is a multiplier. Each input pulse is multiplied by the adjusted factor. The display shows integers only. After a reset the counter is completely reset to 0 ; this also includes the non-visible value of <1.

At a prescaler of >1 not all the values are selectable. If invalid Preset values are selected, the counter will round them up to the next possible value.

Example: PSC 5 cannot select (reach) Preset value 7. In this case, the counter automatically changes the Preset value to 10).

If the Prescaler is changed, this may also affect the Preset values, which may have to be changed accordingly.

Adjusting range 0,0001 to 99,9999
The Prescaler is used, for example, to convert counter pulses into meaningful units, to adapt the units of measurements (e.g. cm-pulses to inch-pulses), or to compensate for worn out measuring wheels.

Formula: PSC = Desired/nominal display / number of pulses
Example: Flowmeter 173 pulses per 100 liters; display in liters
$\mathrm{PSC}=100 / 173=0,5780$
Example: 1 pulse per cm ; display in inch
PSC $=1 / 2,54=0,3937$

General description of multifunctional counter

Attention: This is only valid for counters and tachometers. For timers please refer to the special Timer Description.

Display 2. row:

The display of the 2nd row can be programmed as follows:
P 2, P 1, P 0, Prescaler, Batch counter, totalizer or partial sums (shift counter)

Counter and control inputs:

The counter is fitted with 3 counter and control inputs and, in addition, with an application input (see below). These inputs are assigned various counter or control functions by means of function code settings

Input logic:

The input logic can be programmed to NPN or PNP, each at the 8V-level or TTL level; see Technical Data for the switching threshold.

Reset/Set:

Manual setting via keys (lockable)
Electronic setting via control input (and/or application input)
Automatic programming after reaching the main Preselection
Programmable Power-On Reset
Depending on the function code the counter is:
1.) Reset: reset to 0

P 2 is the main Preset (preselect) value
During unidirectional counting the counter will add up.
or
2.) Set: reset to $P 2$

Signal 2 at 0
During unidirectional counting the counter will subtract.
For time counting, batch counting or shift counting, it is possible to reset partial sums or the total sum, batch counter or 2nd totalizer individually or at the same time via the application input.

General description of multifunctional counter

Independently the counter can be reset to Preset value 0 via the application input (see below).

Exception: Tachometers do not have a reset/set function

Static/dynamic reset:

Static reset: Reset over the entire pulse width of the reset pulse Dynamic reset: Reset via the active edge; thereafter, counter operation is possible independently of the pulse width of the reset pulse.

Exception: Tachometers do not have a reset/set function

Teach input:

Using the Teach Input (application input) the counter status is imported in Preset 2.

Decimal Point:

The decimal point is only an optical reading assistence on the display and does not change the value. For example, for a value of 1 pulse per cm , the setting 0,00 makes it easier to read the value in m and cm .

Exception: This does not apply to tachometers and timers.
Please refer to the detailed Tachometer and Timer descriptions.

Input damping

(Attenuation)
The inputs A and B are limited to 60 kHz .
The Application Input is limited to 6 kHz .
Following maximum input frequencies are not to be exceeded:
Phasediscriminator single evaluation: A and B each 30 kHz (TTL 15 kHz)
Phasediscriminator double evaluation: A and B each 30 kHz (TTL 15 kHz)
Phasediscriminator quadruple evaluation: A and B each 15 kHz ($T \mathrm{LL} 15 \mathrm{kHz}$) Unidirectional counting and directional input: Input A 60 kHz (TLL 15 kHz) Differential counting, summation (totalizing): Input A + B 60 kHz (TL 15 kHz)

General description of multifunctional counter

When the application input is used as an additional count input, the above mentioned input frequencies have to be reduced by the frequency of the application input:

If mechanical contacts are triggered (i.e. relays, switches, Reed contacts, etc.), the input frequency has to be damped (attenuated) to 30 Hz , so as to filter out bounce pulses.
If damping to 30 Hz is selected, all inputs can be used at 30 Hz .
To reach these values the amplitude thresholds are to be hold.
(See technical data - chapter 10)

Signal

P 1 and P 2 are available as relay changeover contacts and electronic output signals (PNP).
P 0 is available as an electronic output signal across the application output (PNP).

If a signal is active, this will be shown on the LCD display.
Optionally, the multifunctional counter can be set to have the display flash if one or all the preset values are acive.

This is also valid for Preset 0 (if no output has been assigned)

Signaltime:

1.) bistable: Cleared by electronic or manual reset.

P $0+\mathrm{P} 1=$ bistable - additionally cleared by signal 2
Attention: Signal 2 must not be bistable for automatic reset.
2.) monostable: Up to 9 fixed signal times are available between $0,02 \mathrm{~s}$ and 10s. In addition, user times can be programmed between 0,01s to 599,99s.
3.) Range signals: active as long as the counter reading is within the adjusted range.

Signals active on/off

During normal operation the relay is energized if the signal is active.
This behavior can also be inverted (also applicable to the transistor outputs).

General description of multifunctional counter

Application input/output:

Depending on the standard function, up to 11 (eleven) functions can be assigned to the application input/output. Note, however, that only one of these functions can be selected.
Further details are given in the Function Code Chapter.

Application - Set to preset 0

Programs the application input to act as a Set Input. The counter is set to Preset 0 , independently of the reset via input C or the keyboard.

This function is not available for tachometers.

Application keylock:

All keyboard functions can be locked (latched) individually (Reset, P 0, P 1, P 2, Prescaler)
Lock mode: release after 10s, complete keylock or keylock depending on keylock input (application input)

Our advice! After setting up the system, lock (latch) all the keyboard functions that are not allowed to be changed by the user.

Pulse counter

5 Pulse Counter

5.1 Description of the Pulse Counter

(Supplementing the General Description in Chapter 4)

Counter mode:

The following counter modes can be selected:
Unidirectional counting, adding or subtracting;
Unidirectional counting with directional input;
Differential counting, summation (totalizing) or phase discriminator (quad) with single, double or quadruple evaluation.

Output signals mode of operation:

1.) coincidence signal: The counter operates in the coincidence mode, i.e. output signals are activated after reaching the Preset value for the programmed period of time.
2.) Trail: $P 2$ and $P 0$ are under coincidence operation; they operate as described in item A.
$P 1$ is the trail. P 1 is not absolute to 0 , but relative to P 2 .
If the setting is $\mathrm{F} 8=1$, the following will apply:
Signal 1 is returned at $\mathrm{P} 2-\mathrm{P} 1$
Example: P $2=1000$, P $1=200$, Signal 1 at 800 ;
If $P 1$ is negative: $P 2=1000, P 1=(-200)$, Signal 1 at 1200
If the setting is $\mathrm{F} 8=2$, the following will be applicable:
Signal 1 is returned at $P 2+$ und $-P 1$
(Example: P $2=1000$, P $1=200$, Signal 1 at 800 or/and 1200)
3.) range signal: VW 1 and 2 are range signals:

Signal 1 is active at a counter reading $<P 1$ and
Signal 2 is active at a counter reading $>\mathrm{P} 2$

Intermediate cut:

Depending on the application it may become necessary to isolate the main signal during the reset, e.g. when the first material lengths or certain lengths showing material defects have to be cut on length-cutting systems.

Pulse counter

Additional totalizer (summation counter)

The additional totalizer sums up all values, even if the main counter is continually reset. The shift key can be used to switch between the counter reading and the total sum. The totalizer can only be reset manually.
To do this, select the total sum from the first row; then press the reset keys.

Prescaler Output PSC-out:

The prescaler output is an application output.
With each increase of the counter reading the number of output pulses corresponds to the respective number of increments.

The pulse length of the prescaler output corresponds to a frequency of 500 Hz .
When using the prescaler output the max. count frequency is:
F max $=500 /$ PSC.
So it is possible that the maximum input frequency can not be reached.

Application counter input add / sub

The application input may be assigned to the Count Up or Count Down function.
This is a counter input, which is available in addition to the counter mode adjusted with F1.

Application Latch/Reset

Latch/Reset is an application input. If the counter is reset via the application input, the counter reading is held constant. The counter continues to remain fully functional and operates in the background mode. During the next reset the current (updated) value will be shown on the display.

5.2 Signal diagrams input signals (PNP-Logic)

Unidirectional counting ($\mathrm{F} 1=\mathrm{C}$ G r) $=0$

Pulse counter

Differential input (F1=A S r) $=3$

Summation (totalizer) input (F1=A A r) $=5$

Pulse counter

5.3 Signal diagrams - Output signals

Output signals monostable
Coincidence signals P 0 (F10), P 1 (F11), P 2 (F12) monostable

Output signals bistable
Coincidence signal time P 0 (F10) monostable P 1 (F11), P 2 (F12) bistable

Pulse counter

Trail Preset
P 0 (F10) Coincidence signal monostable, P 1 (F8+F11) trail signal, symmetrical, P 2 (F12) Coincidence signal monostable

Range signals
P 0 (F10) Coincidence signal monostable P $1+\mathrm{P} 2$ range signal

Pulse counter

5.4 Programming the counter function codes

Programming mode	Change function setting	Save and change to next function	Return to display mode
$E+$		ν	E
Keep pressed and simultaneously turn Voltage On	press	press	press
Alternative display of function codes		The function text in row By pressing ously you ca cal display (F pressing thes number of th will be displa setting will	are displayed as ys simultanege to the numeri35). After once again the ctable options addition. This ed.

Function code F0, Display Row 1: FLE5EL

Function No. | Display |
| :--- |
| Row 2 |

Factory
Setting 0* No Function
(Defaults)
All Function Codes are set to
1 日GE5 the values marked with*

Pulse counter

Function code F1，Display Row 1：LGURE

Counter Mode	0 ＊		Input A	Input B	Input C
			Count．inpt．	Gate	Reset
	1	［d	Count．inpt．	Direction． Input	Reset
	2	［ 5	Count．inpt．	Direction． Input	Gate
	3	A 5 F	Adding	Subtracting	Reset
	4	－5	Adding	Subtracting	Gate
	5		Adding	Adding	Reset
	6	7号吅	Channel A	Channel B	Reset
	7	7吅口	Channel A	Channel B	Gate

Function code F2，Display Row 1：74Rd

0＊
（ Single evaluation

Edge
Evaluation
／Quadrat． evaluation

$$
2 \quad 4 \quad \text { Quadruple evaluation }
$$

Pulse counter

Function code F3，Display Row 1：17PLDL

PNP／NPN－ Logic	0	MPM＿H	NPN－8V－Level
	1＊	FMP＿H	PNP 8－V Level
	2	MPM号	NPN TTL－Level
	3	口MP＿L	PNP TTL－Level

Function code F4，Display Row 1：in RLL

Function code F5，Display Row 1：「5 Mad

Set／Re－ set－Mode 0＊FE5 ת Reset to 0

1 RrE5 O $\begin{aligned} & \text { Automatic reset to } 0 \text { after reaching } \\ & \text { Preset } 2\end{aligned}$
2 5EL P己 Set to Preset 2
3 R5ELPコ $\begin{aligned} & \text { Automatic set to Preset } 2 \text { after } \\ & \text { reaching } 0\end{aligned}$

Pulse counter

Function code F6, Display Row 1: FE5EL

dynam./
static

Reset $0^{*} \quad$ 5LRL \quad| Static reset (reset as long as the signal |
| :--- |
| is applied) |

$1 \quad \square \unlhd \pi \quad$| Dynamic Reset (ready to count after |
| :--- |
| reset (even if reset signal is applied for |
| a longer time) |

Function code F8, Display Row 1: Pr E5 :

Mode Preset 1	0*	PrE5	P 1 normal preset; absolute to the counter reading (coincidence signal)
	1	ErA!	P 1 as a trail preset with prefix (relative to P 2)
	2	ErAí5	P 1 as a trail preset symmetric trail (relative to P 2)
	3	- AMEE	P 1 and $P 2$ as a range signal (Sign. $1<$ P 1, Sign. 2 > P 2)

Function code F9, Display Row 1 :MuL515

Output signal	0^{*}	Active 0

1 RetgFF Active Off

Pulse counter

Function code F10，Display Row 1：5：5：LD

Signal
time PO
1 b）5LR B Bistable，reset with Preset 2 or Reset
3 日日 0.05 0,05s
4* 日明行 0,10s

6 日日年50 0,50 s
7 日扣行 $1,00 \mathrm{~s}$
8 日月ㄹ..0 $2,00 \mathrm{~s}$
9 日月 5.0. 5,00s
10.50 10,00 s
11 U5ET: User setting 1 (0-599,99 s)
12 U5ET $己$ User setting 2 ($0-599,99 \mathrm{~s}$)
13 U5E5 ヨ User setting 3 ($0-599,99 \mathrm{~s}$)

Pulse counter

Function code F11，Display Row 1：5：5

10 日日号号 $10,00 \mathrm{~s}$
11 U5ET日（ User setting 1 （0－599，99 s）
12 U5EF U User setting 2 （0－599，99 s）
13 U5E5． 3 User setting 3 （0－599，99 s）

Pulse counter

Function code F12，Display Row 1：515 L

Signal time P 2	0	－15月女L	Disabled／No Output signal
	1	ロらヒRロ	Bistable；Reset Cannot be used in conjunction with automatic Reset
	2	日日日凸』	0，02 s
	3	8．8． 55	$0,05 \mathrm{~s}$
	4＊	日明㕲	0，10 s
	5	日日日凫	0，20 s
	6	日日6 $5.5 \square$	0，50 s
	7	日明10\％	1，00 s
	8	日日日 20%	2，00 s
	9	日日65．0	5，00 s

10

11 U5E5 ：User setting 1 （0－599，99 s）
12 U5E5 Z User setting 2 （ $0-599,99 \mathrm{~s}$ ）
13 U5E5． 3 User setting 3 （0－599，99 s）

Pulse counter

Function code F13，Display Row 1：هPa int

Decimal point	0＊日明行 No decimal point		
	1	0.0	1 decimal place
	2	8.5	2 decimal places
	3	9．950	3 decimal places
	4	8909	4 decimal places

Function code F14，Display Row 1：FL 5 5H

Display flashes	0^{*}	MaFL5H Noflashing

1 日月号 Flashes as long as P 0 is active

2 日阵 Flashes as long as P 1 is active
$4 \quad P \Pi-1-\beth \quad$ Flashes as long as one P is active

Pulse counter

Function code F15，Display Row 1：Z．L，nE

Display in
2nd row
0 日月 Р Р

3 日月日5［ Prescaler
4
ヒロレ Totalizer

Function code F16，Display Row 1：BULTES

Cut
1 AEL
Pコ Activate Preset 2 during Reset

Function code F17，Display Row 1：F M M F E 5

Power On （Reset）

$$
0^{*} \text { Ma FES Restore counter value }
$$

FE5 Reset at Power On

Function code F18，Display Row 1：MLIEM

Output signal Memory	0	リヒ5	Restart signal time after power fail A output switches
	1＊	（－Gロロ	Do not restart signal time after power fail

Pulse counter

Function code F19，Display Row 1 ： Ad d L ㅁ

AddtI． Totalizer	0	日日GリE5	Enabled
	1^{*}	明日昍	Disabled

Function code F22，Display Row 1：RPL 1 RP
Applica． 0 P5Laut Prescaler output Input／
Output 1 『ワロロレ Output Preset 0
2 drraut Directional output

4 โnt dn Counter input－subtracting
5 FE5EL Reset input
6 FALE日G Gate input
7 Lac日日．Keylock input
8 Hald．Hold input（display lock）
9 LEAEH $\begin{aligned} & \text { Teach input } \\ & \text {（count value becomes P 2）}\end{aligned}$
10 5EL日日G Set input（Set to Preset 0）
11 LRE．EES $\begin{aligned} & \text { Latch and Reset } \\ & \text {（Save display at Reset）}\end{aligned}$

Pulse counter

Should you have a counter with interface, the additional function codes F24-F27 are described in the seperate manual for the interface version.

Function code F30, Display Row 15 E5LaE

Function code F31, Display Row 1: \boldsymbol{F} に

Lock Preset 0	0^{*}	unla	P 0 Setting enabled
	1	Lロ	P 0 Setting locked / delayed

Function code F32, Display Row 1:P 1 Lar

$$
1 \text { Lac P } 1 \text { Setting locked / delayed }
$$

Pulse counter

Function code F33，Display Row 1： P ב La

Jock	0＊	uribe	P 2 Setting enabled
Preset 2			
	1		P 2 Setting locked／

Function code F34，Display Row 1：P5［LaE

Lock	0＊	－¢－	PSC setting enabled
Prescaler			
setting	1	2日日ロロ	PSC Setting locked／

Function code F35，Display Row 1：FLロロRL

1 Lロロ ${ }^{\text {I }}$ Completely locked
2 inPlar Lock mode depends on keylock input

Tachometer

6 Tachometer

6.1 Tachometer Description

(Supplementing the General Description given in Chapter 4)

Operation:

A tachometer measures the period (PNP: time from one rising edge to the next one); NPN: time period from a falling edge to the next one), and converts and displays this time in $1 /$ sec or $1 / \mathrm{min}$.

Tachometer Mode of Operation:

The following modes of tachometer operation can be selected:
Unidirectional counting;
Unidirectional counting with directional input;
Differential counting, summation (totalizing);
Phase discrimination (quad) with single, double or quadruple evaluation;
Indication of ratio A / B and
Indication of percentage (A-B)/A in \%

Decimal point

Tachometer mode of operation 0-4 (function code F1)
The decimal point only serves for better legibility and does not change the value.
Tachometer mode of operation $5+6$ (function code F1)
The decimal point is included in the calculation and increases the resolution.

Output signals Mode of operation:

The tachometer uses the following limit values:
P 1 and 2 are limit (range) signals
Signal 1 is active at the displayed value of $<\mathrm{P} 1$ and
Signal 2 is active at the displayed value of $>P 2$
Signal 0 is active at the displayed value of $>\mathrm{P} 0$; (application output)

Tachometer

Display unit:

Programmable: $1 / \mathrm{sec}$ or $1 / \mathrm{min}$
Using the setting $1 / \mathrm{min}$ and prescaler 60 the display will show $1 /$ hour.

Min. input frequency:

Programmable 1 Hz or 0.1 Hz .
If two edges do not occur within 1 s or respectively 10 s ,
a value of 0 will be displayed.

Startup suppression:

Programmable Yes/No
During the startup the lower limit signal is suppressed until the lower limit value is exceeded for the first time.
The startup suppression will become active again, if the minimum frequency is fallen below.

6.2 Signal diagram - Output signals

Tachometer

6．3 Programming the tachometer function codes

Function code Fo，Display Row 1：FEL5EL

Function No．Display

Factory
Setting 0＊
Ma No function
（Defaults）
1 日日Gリ55
All function codes are set to the va－ lues marked with＊

Tachometer

Function code F1，Display Row 1：E～MRE

Tacho mode of operation			Input A	Input B	Input C
	0＊	［5H	Count input	Gate	Hold （Display memory）
	1	［日H	Count input	Direct． input	Hold （Display memory）
	2	H5	Adding	subtracting	Hold （Display memory）
	3	7 H	Adding	Adding	Hold （Display memory））
	4	7吅d	Channel A	Channel B	Hold （Display memory）
	5	Arb	Channel A／	Channel B	Hold （Display memory）
	6	A－ロロロ	（A－B）／ A in （Difference	\% \% of A)	Hold （Display memory）

Tachometer

Function code F2，Display Row 1：7URd

Edge
0^{*}
Evalua－
tion／
Quadrat． evalua－ tion

2
1
〕 Dual evaluation

4 Quadruple evaluation

PNP／
NPN－ 0 MPM＿H NPN 8 V－Level
Logic
1＊Pクロ＿H PNP 8 V－Level

2 MPM＿NPN TL－Level

3 PMP＿L PNPTL－Level

Function code F4，Display Row 1：in \boldsymbol{A} LL

Tachometer

Function code F5，Display Row 1：LM：

Display	0^{*}	PPSEL
Unit		

1 РРП，п Pulse per minute（ $1 / \mathrm{min}$ ）

Function code F6，Display Row 1：a Fra

Min．	0＊	日日日日日．	1 Hz （if no further pulse is received after 1 s ，the display will return to 0 ）
Input frequency	1	［日ВВ 7.1	$0,1 \mathrm{~Hz}$ （if no further pulse is received after $1 s$ ，the display will return to 0 ）

Function code F7，Display Row $1: 5 \mathrm{~L}$ 519

0
JE5 With startup suppression

Startup－ suppress．
1* 日月日日

Function code F9，Display Row $1:$ RuL5：5

0＊Rat日（ Active On

Output
signal
1 RELGFF Active Off

Tachometer

Function code F10，Display Row 1：5：¢ LT

P 0	0＊	は，5月ロ！	Disabled／no Output signal
Addtl．			
Upper			
limit	1	EnAbLE	Additional range signal＞P 0

Function code F11，Display Row 1：5：5

P 1	0 ＊	－15月6！	Disabled／no Output signal
Lower			
limit	1	EnAbLE	Range signal＜P 1

Function code F12，Display Row 1：5：5Eコ

P 2 Upper
limit
1 EnAbLE Range signal＞P2

Tachometer

Function code F13，Display Row 1：هPa int

1
ת． 1 Decimal place

2 日月．0． 2 Decimal places
3
0.00
3 Decimal places

4
תロתロロ4 4 Decimal places

Function code F14，Display Row 1：FLRSH

Display
flashes

1 PR Flashes as long as Po active

2
P ：Flashes as long as P1 active

3 日日 P I Flashes as long as P 2 active
$4 \quad P \square-1-\beth \quad$ Flashes if one preset is active

Tachometer

Function code F15，Display Row 1：Z．L，mE

Display in
2nd row

1

F ：Preset 1

2＊日月日日ロ Preset 2

$$
3 \text { P5[Prescaler }
$$

Function code F22，Display Row 1：RPL 1 IR

Applica－ tion	0	ロッチロヒ	Output Preset 0
Input／ Output	1	日下「ロL	Directional output
	2＊	F日r	Count input adding，or 2nd count input A
	3	「日吅	Count input subtracting，or 2nd counter input B
	4	FREE日G	Gate Input
	5	Hata日日	Hold－Input（display memory）
	6	EEREHG	Teach Input （count value becomes P 2）
	7	Lロロロ日日	Keylock－Input

Tachometer

Should you have a counter with interface，the additional function codes F24－F27 are descri－ bed in the seperate manual for the interface version．

Function code F31，Display Row 1：P品吅
Lock Pre－ 0^{*} unLar P0 Setting enabled
set 0 Set－
ting
1 日G日 L Po Setting locked／delayed

Function code F32，Display Row 1：P 1 LaI

Lock Pre－ 0^{*} unlar P1 Setting enabled set 1 Set－
ting

$$
1 \text { Lar P } 1 \text { Setting locked / delayed }
$$

Lock Pre－ 0^{*}

set 2 Set－
ting

Tachometer

Function code F34, Display Row 1:P5[Lar

Lock
0* unLロa PSC Setting enabled

Prescaler
Setting

Function code F35, Display Row $1: 5 \mathrm{~L}$ abRL

$$
1 \text { Lary Completely locked }
$$

2 inPLar Lock mode depends on keylock Input

7 Timer

7.1 Timer Description

(Supplementing the General Description in Chapter 4)

Function:

The timer counts seconds, minutes or hours.
Depending on the resolution (see below) the smallest units to be recorded are 0,1 ms.
Combined with the prescaler (see below), quantities can be measured as a function of time.

Time formats:

4 time formats are available:
Seconds, minutes, hours and HH:MM:SS

Resolution:

By shifting the decimal place, a resolution of up to 4 decimal places can be programmed; the smallest resolution is $0,1 \mathrm{~ms}$.
The time format "seconds with four decimal places" shows 0.1 milliseconds.
The time format "seconds with three decimal places" shows milliseconds. The time format "minutes with two decimal places" shows $1 / 100$ minutes

Prescaler:

During the timer operation the prescaler has to be disabled or set to 01,0000 . The prescaler can be used to record quantities, provided that the quantity per time unit is known.
Example: A volume of 3 liters per second is supplied.
Settings: Time format "seconds", prescaler 3,0000
Display: Supplied volume in liters as a function of time.
The prescaler cannot be used with the time format HH:MM:SS as it is not active (effective) in this format.

Timer

Timer mode of operation:

The following modes of timer operation can be selected:
Cumulative measurement following the pulse-width measuring principle (Cumulative measurement as long as input A is active)
Cumulative measurement following the cycle-duration principle
(Cumulative measurement from rising edge Input A to falling edge of Input A)
Cumulative measurement $A=$ Run, $B=S$ top (cumulative measurement from rising edge Input A to rising edge Input B)
Single-pulse measurement following the pulse-width measurement principle (Measure as long as Input A is active)
Single-pulse measurement following the cycle-duration principle (Measurement from rising edge Input A to rising edge of Input A)
Single-pulse measurement $A=$ Run, $B=$ Stop (Cumulative measurement from rising edge Input A to rising edge Input B)

Manual Start / Stop via keyboard:

The Start / Stop function can be programmed via the keyboard.
Start: Press the UP button for 0.5s
Stop: Press the DOWN button.

Output signals -Function:

A coincidence signal: The timer operates in the "coincidence" mode, i.e. the output signals are enabled for the programmed period of time after reaching the selected preset value
B trail signal: P 2 and P 0 operate in the "coincidence" mode, i.e. the output signals are enabled for the programmed period of time when reaching the selected preset value. P 1 is a trail preset and not absolute to 0 , but relative to P 2.

If the setting is $\mathrm{F} 8=1$, the following will apply:
Signal 1 is returned at $\mathrm{P} 2-\mathrm{P} 1$
Example: P $2=1000$, P $1=200$, Signal 1 at 800 ;
If P1 is negative: $P 2=1000, P 1=(-200)$, Signal 1 at 1200
If the setting is $\mathrm{F} 8=2$, the following will be applicable:
Signal 1 is returned at $P 2+$ und $-P 1$
(Example: P $2=1000$, P $1=200$, Signal 1 at 800 or/and 1200)
C range signal: P 1 and 2 are range signals:
Signal 1 is active at timer reading $<\mathrm{P} 1$ and
Signal 2 is active at timer reading $>P 2$

D batch mode: The timer can also be programmed to act as a batch counter. In this case, P 2= main preset value; P 1 = Batch preset.
In the Batch mode of operation, only positive entries are possible for P1; negative entries will be stored as positive values.
This mode is ideal to default a process time and the number of process sequences (runs).

Additional totalizer:

The additional totalizer is used to sum up all the times (even after repeated resetting of the main counter). The totalizer is reset separately.

7.2 Signal Diagrams - Input signals

Timer

7.3 Signal Diagrams - Output signals

The output signals of the timer can be derived from the pulse counter (see 5.3) or, respectively, batch counter (see 9.2) functions.

7．4 Programming the Timer function codes

Program－ ming mode	Change function setting	Save and change to next function	Return to display mode
$E+\nabla$	－	\rangle	E
Keep pressed and simultaneously turn Voltage On	press	press	press
Alternative display of function codes		The functio as By pressing ously you numerica After pres again the ble options addition	s are displayed row 1. eys simultane－ hange to the （F 0 to F 35）． ese keys once of the selecta－ e displayed in etting will be d．

Function code F0，Display Row 1 FEL5EL

Function	No．	Display Row 2	
Factory Setting （Defaults）	0＊	日回日吅	No function
	1	日日ロヒ5	All function codes are set to the va－ lues marked with＊

Timer

Function code F1, Display Row 1:Un, t

Time unit
o* 5Eannd Seconds

1 RinutE Minutes

2 Haur 5 Hours

3 HH.OR.55 нн:мм:SS

Function code F2, Display Row 1:5 55:L

Resolution 0^{*}
Π No decimal point

$$
1
$$

$2 \square \square \square 2$ decimal places

$$
\begin{aligned}
& 3
\end{aligned}
$$

Function code F3, Display Row 1: 19PL BL 2

PNP/NPNLogic o MPM_H NPN 8 V-Level

$$
\text { 1* PMP_H PNP } 8 \text { V-Level }
$$

2 MPM_L NPN TTL-Level

3 PMP_L PNP TIL-Level

Function code F4, Display Row 1: in REL

Function code F5, Display Row 155 Mad

$$
\begin{array}{lllll}
\begin{array}{l}
\text { Set/Re- } \\
\text { set- Mode }
\end{array} & 0^{*} & \text { rES } & \text { Reset to } 0
\end{array}
$$

1 R G E 5 B $\begin{aligned} & \text { Automatic set to } 0 \\ & \text { after reaching Preset value } 2\end{aligned}$
2 5EL Pコ Set to Preset 2
3 R5ELPコ $\begin{aligned} & \text { Automatically sets to Preset } 2 \\ & \text { after reaching } 0 .\end{aligned}$

Timer

Function code F6, Display Row 1:5E5EL

dynam/ static	0*	5	Static Reset (as long as the signal is applied)
	1	- \ddagger	Dynamic Reset (ready to count after reset, even if reset signal is applied for a longer time)

Function code F7, Display Row 1:E : REF

TimerMode of Operation
Cumulative measurement - pulse-

Function code F8, Display Row 1FTE5 :

Mode
Preset 1
0* PrES
P 1 normal preset; absolute to counter reading (coincidence signal)

1 P 1 is a trail preset with prefix (rela1 LrAIL tive to P 2)

2 L-RIL5 $\quad \begin{aligned} & \mathrm{P} 1 \text { as a symmetric trail preset }\end{aligned}$

3 - AMEE $P 1$ and $P 2$ are range signals (Sign.1<P1, Sign.2>P2)

Function code F9, Display Row 1 MuL5:
Output signal

0* Bet On Active On $^{\text {O }}$

1 BgtgFF Active Off

Timer

Function code F10，Display Row $1: 5:$ ： 5

Signal
time P0 0 d，5月bL Disabled／No output signal

1	ロリヒRロ	Bistable，reset with Preset 2 or Reset
2	日月ロロココ	0，02 s
3	日日月5．75	0，05 s
4＊	日日日可吅	0，10 s
5	日日ロコワ	0，20 s
6	［日月5\％	0，50 s
7	日月日 1，吅	1，00 s
8	日日日コ．	2，00 s
9	［日月， 5 ¢	5，00 s
10	日日 19\％7	10，00 s

11 U5ET：User setting 1 （0－599，99 s）

12 U5EF U User setting 2 （ $0-599,99$ s）
13 U5ETE User setting 3 （ $0-599,99$ s）

Function code F11，Display Row $1: 5$ ： 5 ：
$\begin{array}{llll}\begin{array}{l}\text { Signal } \\ \text { time P } 1\end{array} & 0 & \text {－5月LL } & \text { Disabled／no output signal }\end{array}$

1		Bistable，reset with Preset 2 or Reset
2	日日日ロロコ	0，02 s
3	日日日 0.95	0，05 s
4＊	日日年18	0，10 s
5	日日日ロコロ	0，20 s
6	日日605\％	0，50 s
7	6日日 $10 \square$	1，00 s
8	［日． $2.0 \square$	2，00 s
9	6．65．0\％	5，00 s

10
1月．马 $10,00 \mathrm{~s}$
11 U5E5（ User setting 1 （0－599，99 s）
12 M5E5 Z User setting 2 （ $0-599,99 \mathrm{~s}$ ）
13 U5E5． 3 User setting 3 （0－599，99 s）

Timer

Function code F12，Display Row 1：5：¢ L ᄅ

Signal time P 2	0	日，5RbL	Disabled／No output signal
	1	ロ：5ヒアロ	Bistable；Reset function cannot be used in connection with automatic Reset
	2	日日ロ号コ	0，02 s
	3	－ $70 \square$	0，05 s
	4＊		0，10 s
	5	日日ロコロ	0，20 s
	6	7日G757	0，50 s
	7	日日日 1．9\％	1，00 s
	8	ВВВコ．ロ	2，00 s
	9	ВВロЯワ	5，00 s
	10	［日 17，\square^{\square}	10，00 s
	11	15E5日	User setting 1 （0－599，99 s）
	12	\＃5ETコ	User setting 2 （0－599，99 s）
	13	M5EFGコ	User setting 3 （0－599，99 s）

Function code F13，Display Row 1：P 5Lロロ

Function code F14，Display Row 1：FLG5H
Display
flashes 0^{*} MaFL5H no flashing

Pת Flashes as long as P 0 is active
2
P Flashes as long as P 1 is active
3
P ᄅ Flashes as long as $P 2$ is active
$4 \quad P \Omega-i-\beth \quad$ Flashes as long as $1 P$ is active

Function code F15，Display Row 1：Z．L，TE

Display in
2nd Row
Pת Preset 0
1
P：Preset 1

2＊日月日ロコ Preset2
3 日日－P5：Prescaler
4 EロELRE Totalizer／Batchcounter

Timer

Function code F16，Display Row 1：7月n

Start／
$\begin{array}{lll}\text { Stop via } & \text { 0＊} \quad \text { ．5RLL }\end{array} \begin{aligned} & \text { Start／Stop locked via keys } \\ & \text { UP key＝Start；DOWN key＝Stop }\end{aligned}$ Keyboard
（manual）
1 EARGLE Start／Stop enabled via keys UP key＝Start；DOWN key＝Stop

Function code F17，Display Row 1：FRTFES

Power On Reset 0＊Пロ FE5 Restore counter value
1
「E5 Reset at Power On

Function code F18，Display Row 1：MLMEM

Output Signal Memory	0	G日GE5	Restart signal time after power fail \triangle output switches
	1＊	回日回吅	Do not restart signal time after power fail

Function code F19，Display Row 1：FddEat
Addtl．
Totalizer

HE5 Enabled

1＊日月日昍 Disabled

Function code F20，Display Row 1：P FE5［L
Prescaler
0＊』，5月ロレ Prescaler not active

1 EnRGLE Prescaler active

Function code F21，Display Row $1:$ ： \boldsymbol{I} R L Р
Timer Type
0＊E：MEF．Preset timer

1 bAEEH Batch timer

Function code F22，Display Row 1：RPL 1 RP

Appli－ cation Output	0	Pת アut	Output Preset 0
	1^{*}	「ип日日	Run－Input
	2	5Rロロ日	Stop－Input
	3	FESALL	Reset counter and totalizer or batch counter
	4	FESEnt	Reset－only counter

Timer

5 FESLRL Reset－only totalizer or batch counter

6 Lロロ日．Keylock input

7 HaLd日．Hold input（display memory）

8 EER［H
 Teach Input（count value becomes P
 2）

9 5EL日日日．Set Input（set to Preset 0）

！
Should you have a counter with interface，the additional function codes F24－F27 are descri－ bed in the seperate manual for the interface version．

Function code F30，Display Row 1 ：5E5Lロㄷ
Lock Reset
uTLロロ Keyboard reset enabled Key

1 日G日ロ K Keyboard reset locked／delayed

Function code F31，Display Row $1: \Gamma \mathrm{La}$ L

Lock Pre－
set 0 Set－0＊unLar Po Setting enabled
ting
1 Lat Po Setting locked／delayed

Function code F32, Display Row 1:P 1 LaE

Lock Pre-
 ting

$$
1 \text { Lac P } 1 \text { Setting locked / delayed }
$$

Function code F33, Display Row 1:P I LaI

Lock Pre-
$\begin{array}{ll}\text { Lock } 2 \text { Set- } & 0^{*} \text { unlar P2 Setting enabled }\end{array}$ ting

Function code F34, Display Row 1:P5[LaE

Lock Pres$\begin{array}{ll}\text { Lock Pres- } \\ \text { caler Set- } & 0^{*} \quad u n \text { Lar } \\ \text { PSC Setting enabled }\end{array}$ ting

$$
1 \text { Lat PSC Setting locked / delayed }
$$

$$
1 \text { Lat }
$$

2 inPLaE Lock mode depends on keylock input

Shift Counter

8 Shift Counter

8.1 Shift Counter Description

(Supplementing the general description under chapter 4)

Function:

2-shift counters enable the acquisition of 2 separate partial sums.
Counter input A acts on partial sum 1, whereas counter input B acts on partial sum 2.
Both partial sums are counted positively; the total sum is calculated mathematically and corresponds to the summed-up total (or respectively, the difference) of the partial sums.
The total sum remains unchanged after resetting one of the partial sums.

Counter mode of operation:

The following counter modes of operation can be selected:
Difference counting and summation (totalizing)

Output signals - mode of operation:

The counter operates in the "coincidence" mode, i.e. the output signals are enabled for the programmed period of time after reaching the selected Preset value.
The total sum acts on Preset 0
Partial sum 1 acts on Preset 1
Partial sum 2 acts on Preset 2

Reset:

After a reset at input C, both partial sums and the total sum are reset.
When resetting via the application input it is possible to reset one or both of the partial sums or the total sum, depending on the selected programming. When resetting via the keyboard, only the value shown on the display is reset.

Totalizer:

The totalizer sums up all the input pulses, even if the partial sums and the total sum are reset. The totalizer can only be reset manually.

Shift Counter

8.2 Scrolling between Total Sum and Partial Sums

The Shift key is used to scroll between the total sum and partial sums 1 and 2.

If a partial sum is shown, SU1 or SU2 will appear flashing in the lower display bar.

8.3 Signal diagrams - Inputs (PNP Logic)

Adding/Adding (F1= A A r)

Input A

Input B
Counter reading Partial sum 1
Partial sum 2
Total sum

Shift Counter

Adding/Subtracting (F1=A S r)

Input A

Input B

Counter reading
Partial sum 1
Partial sum 2
Total sum

8.4 Signal Diagrams - Output signals

Output signals - monostable
Coincidence signals P 0/Total Sum (F10), P 1/Partial sum 1 (F11), P 2/Partial sum 2 (F12) monostable

Shift Counter

8.5 Programming the Shift Counter Function Codes

Programming mode $E+$ Keep pressed and simultaneously turn Voltage On	Change function setting \square or press	Save and change to next function press	Return to display mode E press
Alternative display of Function codes	$+$	The function codes text in row 1. By pres simultaneously you the numerical displa After pressing these the number of the tions will be display This setting will be	re displayed as ssing both keys an change to (F 0 to F 35). keys once again lectable opd in addition. ored.

Function code F0, Display Row 1 :FLE5EL
Function No. Display Row 2
Factory
Setting (Defaults)

Ma No function

1
UE5 All function codes are set to the values marked with *

Shift Counter

Function code F1, Display Row 1:L BU ML

Input A \vdots Input B \vdots Input C

Counter
mode of 0 万 F Adding \vdots Subtracting \vdots Reset
Operation

Function code F3, Display Row 1: 1RPLR5

```
PNP/
NPN-Lo- 0 MPM_H NPN 8 V-Level
gic
```

1* PMP_H PNP 8 V -Level
2 MPП_L NPN TTL-Level
3 PMP_L PNP TL -Level

Function code F4, Display Row 1: in REL

0 LarI 30 Hz damping (attenuation); e.g. for
Input mechanical contacts

Attenuat.
1* H, Fr G F max. (see chapter 4 and 10)

Function code F5，Display Row 1F－ESEL
With／
without 0 HE5 With Preset
Preset
1＊日月日日目口 Without Preset

Function code F6，Display Row $1: 5 \mathrm{E} 5 \mathrm{E}$

Dynamic／ static Reset	0＊	5LRL	Static reset（reset as long as signal is applied）
	1	d	Dynamic Reset（ready to count after reset，even if reset signal is applied for a longer time）

Function code F9，Display Row 1：Muにら：」

1 RetgFF Active Off

Shift Counter

Function code F10，Display Row 1：5：5：

	0	－，5RbL	Disabled／no output signal
Signal time P 0 Total Sum			
	1	何明	Bistable；reset with Reset
	2		0，02 s
	3	（1） 7.75	0，05 s
	4＊	7日ロ $7 \square$	0，10 s
	5		0，20 s
	6	7日．75\％	0，50 s
	7	7日日 1．97	1，00 s
	8		2，00 s
	9	7．7．79	5，00 s
	10	1．17．75	10，00 s
	11		User setting 1 （0－599，99 s）
	12	吅を	User setting 2 （0－599，99 s）
	13	\＃5EFG3	User setting 3 （0－599，99 s）

Function code F11，Display Row $1: 5$ ： 5 E ：

2	日日日凸．）	$0,02 \mathrm{~s}$
3	8．8．0．55	$0,05 \mathrm{~s}$
4＊	日明吅	$0,10 \mathrm{~s}$
5	日日日可	0，20 s
6	日日60．5\％	0，50 s
7	日日日18号	$1,00 \mathrm{~s}$
8	日日日コロロ	2，00 s
9	8．6．50	5，00 s
10	日明吅吅	10，00 s
11	\＃5EFG：	User setting 1 （0－599，99 s）
12	U5EFB	User setting 2 （0－599，99 s）
13	U5EFGコ	User setting 3 （0－599，99 s）

Shift Counter

Function code F12，Display Row 1：51～に 」

Signal time P 2	0	－5月ا	Disabled／no output signal
Partial sum 2	1	口今ヒアロ	Bistable；reset with Reset
	2	日日ロ凸』コ	0，02 s
	3	［日月， 5	0，05 s
	4＊		0，10 s
	5	日日ロコワ	0，20 s
	6	日日月57	0，50 s
	7	日月．1．79	1，00 s
	8	日日ロロ号	2，00 s
	9	［日月．5\％	5，00 s
	10	ㅁ．7ヵワ	10，00 s

11 U5E5：User－Einstellung 1 （ $0-599,99 \mathrm{~s}$ ）
12 U5EF 2 User－Einstellung $2(0-599,99 \mathrm{~s})$
13 U5ETE User－Einstellung 3 （ $0-599,99 \mathrm{~s}$ ）

Shift Counter

Function code F13，Display Row 1：هP口 ant

Decimal Point

I No decimal point

1 日回呂 1 decimal place

2 日．П．П． 2 decimal places
3
8.000
3 decimal places

4
75050
4 decimal places

Function code F14，Display Row 1：FLF5H

Display flashes	$0 * \quad$ MaFL5H No flashing

1 日月日攺 Flashes as long as P 0 is active

2
P ：Flashes as long as P 1 is active

3 日日 Flashes as long as P 2 is active

Shift Counter

Function code F15，Display Row 1：Z．L，$n \mathrm{E}$

Display in 2nd Row	0	昍口号	Preset 0
	1	回口	Preset 1
	2＊	回日コ	Preset 2
	3	－ロ55	Prescaler
	4	昭519	Partial sum 1
	5	（1）こ	Partial sum 2
	6	回日ロレ	Totalizer

Function code F17，Display Row 1：PRTFE5

0＊MarE5 Restores the counter value

Power－On
Reset

Function code F18，Display Row 1：MLREM

Output	0	HE5	Restart signal time after power fail ！output switches
Signal			
Memory	1＊	日回回口	Do not restart signal time after fail

Shift Counter

Function code F19，Display Row 1 ： Hadtat

	0	日Gロப5	Additional totalizer is enabled
Addtl．			
Totalizer			
	1＊	日日日日可	No additional totalizer

Function code F22，Display Row 1：APL 1 IR

Appli－ cation	0	「7日吅	Output Preset value 0
Input／			
Output	1＊	月コ：	2 nd counter input partia

2 ロコ
3 「E5 5：Reset of partial sum 1
4 「E5」コ Reset of partial sum 2
5 「E5．5 コ Reset of both partial sums
6 FESEロヒ Reset of total sum
7 HロL Hold Input（display memory）
9 Lロロ日日 Keylock Input

Shift Counter

！Should you have a counter with interface，the additional function codes F24－F27 are descri－ bed in the seperate manual for the interface version．

Function code F30，Display Row 1 ：5 5LaE

| Lock | 0^{*} | unlar |
| :--- | :--- | :--- | :--- |
| Reset key | Keyboard reset enabled | |

$$
1 \text { Lat Keyboard reset locked / delayed }
$$

	0＊	－¢	Po Setting enabled
Lock			
Preset 0	1	－Lロロ	P 0 Setting locked

Function code F32，Display Row 1：P
0* unlar P1Setting enabled

Lock
Preset 1

$$
1 \text { L日: P } 1 \text { Setting locked / delayed }
$$

Shift Counter

Function code F33, Display Row 1 : P LaI

0* unlar P2 Setting enabled

Lock
Preset 2

$$
1 \text { Lac P2 Setting locked / delayed }
$$

Function code F34, Display Row 195[LaE

Lock 0* unlar PSC Setting enabled

Prescaler
Setting

$$
1 \text { Lar PSC Setting locked / delayed }
$$

Function code F35, Display Row $1: \overline{\text { L }}$ LaR
$\begin{array}{llll}\text { Lock } & 0^{*} & \text { IRE5E } & 10 \text { seconds delay } \\ \text { Mode }\end{array}$
1 Lロロ Completely locked

2 inPlar Lock mode depends on keylock input

Batch Counter

9 Batch Counter

9.1 Batch Counter Description

(Supplementing the general description in Chapter 4)

Function:

Preset 2 is the main Preset setting.
Preset 1 is the Batch Preset or, respectively, the preset value of the 2 nd totalizer.
In the batch operation the batch counter counts how often the main Preset is activated.
Example of an application: during length cutting operations, for example, both the lengths (main preset) and number (batch preset) can be monitored.
In the Batch mode of operation, only positive entries are possible for P1;
negative entries will be stored as positive values.

Counter mode of operation:

The following modes of operation can be adjusted for the counter:
Unidirectional counting, adding or subtracting;
Unidirectional counting with directional input;
Difference counting, summation and phase discrimination (quad)
with single, double or quadruple evaluation.

Output signals Mode of Operation:

The counter operates in the coincidence mode, i.e. the output signals are enabled for the programmed duration when the selected preset value is reached.

Prescaler Output PSC-out:

The Prescaler output is an application output.
With each increase of the counter reading the number of output pulses corresponds to the respective number of increments.
The pulse length of the prescaler output corresponds to a frequency of 500 Hz . When using the prescaler output the max. input frequency is:
F max = 500 / PSC.
So it is possible that the maximum input frequency can not be reached.

Batch Counter

9.2 Signal Diagrams - Inputs and Outputs

Unidirectional count ($\mathrm{F} 1=\mathrm{C}$ G r), Batch counter ($\mathrm{F} 19=\mathrm{bAtch}$),
Preset 2 (Main Preset $=5$, Preset 1 (Batch Preset) $=3$

Counter Reading 12
Batch Counter
1
2
3

9.3 Programming the Batch Counter Function Codes

Programming mode	Change function setting	Save and change to next function	Return to display mode
E	, or	\rangle	E
Keep pressed and simultaneously turn Voltage On	press	press	press
Alternative display of Function codes		The function co as text By pressing both ously you can merical display pressing these k number of the will be displaye setting w	s are displayed row 1. keys simultaneange to the nu0 to F 35). After once again the ectable options in addition. This be stored.

Batch Counter

Function code F0, Display Row 1FEL5EL

Function No. Display Row 2

Function code F1, Display Row 1:LTMRL

Batch Counter

Function code F2, Display Row 1:7URd

Function code F3, Display Row 1: MRPLRE
PNP/
NPN-Lo- 0 MPM_H NPN 8 V-Level gic

1*	PMP_H	PNP 8 V -Level
2	MPM_L	NPN TL-Level
3	PMP_L	PNP TL-Lev

Function code F4, Display Row 1: in REL

Batch Counter

Input damping	0	LロFrg	30 Hz damping（e．g．for mech contacts）
（At－ tenuat）	1＊	H，F－G	F max．（see chapter 4 and 10）

Function code F5，Display Row 1：55 Mad

Set／Re－ set－Mode 0 * rE5 \quad Reset to 0

1 R－E5 $\quad \begin{aligned} & \text { Automatic reset to } 0 \text { when Preset } \\ & \text { value } 2 \text { is reached }\end{aligned}$

2 エELPコ Sets to Preset value 2

3 R5ELPコ $\quad \begin{aligned} & \text { Automatic set to Preset } 2 \text { after } \\ & \text { reaching } 0\end{aligned}$

Function code F6，Display Row 15 E5EL

Dynamic／	0＊	らヒアL	Static Reset（reset as long signal is applied）
static Reset	1	岛吅口	Dynamic Reset（ready to count after reset，even if reset signal is applied for a longer time）

Batch Counter

o＊Rct 亿n ActiveOn

Output
signal
1 RgEMFF Active Off

Function code F10，Display Row $1: 5: 5 \in \square$

Signal time P 0	0	－5月女L	Disabled／no output signal
	1	ロ！5月Rロ	Bistable；reset with Preset 2 or Reset
	2	日日日ロコ	0，02 s
	3	－6， 0.85	0，05 s
	4＊	日日号浞	0，10 s
	5	日日日ココロ	0，20 s
	6	日6．75］	0，50 s
	7	日日日 $10 \square$	1，00 s
	8		2，00 s
	9	日日65．07	5，00 s
	10	日日 18.08	10，00 s

Batch Counter

11 U5E5．

12 U5E「コ User－setting 2 （0－599，99 s）
13 U5E「． 3 User－setting 3 （0－599，99 s）

Function code F11，Display Row 1：515

Signal	0	－5月6L	Disabled／no output signal
Batch－ Preset	1		Bistable；reset with Reset
	2	日日日ロコ	0，02 s
	3	8．6005	0，05 s
	4^{*}	日日日句	0，10 s
	5	日日日ロコロ	0，20 s
	6	8．6．5．5	0，50 s
	7	日日日 108	1，00 s
	8	8．8．0．	2，00 s
	9	日6．5．0］	5，00 s
	10	861800	10，00 s

Batch Counter

11 U5E「 1 User－setting 1 （0－599，99 s）
12 H5E「 H User－setting 2 （0－599，99 s）
13 U5E5 3 User－setting 3 （0－599，99 s）

Function code F12，Display Row $1: 5$ ： 5 E
Signal
time P 2 0 aFBL Disabled／no output signal

1		Bistable；reset with Reset Cannot be used in connection with automatic Reset
2	日日日岛コ	0，02 s
3	日日6 0.5	0，05 s
4＊	日日岛吅	0，10 s
5	日日日马，${ }^{\text {a }}$	0，20 s
6	日日日 $5.5 \square$	0，50 s
7	日日日 19%	1，00 s
8	日日日 20%	2，00 s
9	日日牙加号	5，00 s
10	日日 10.08	10，00 s

Batch Counter

11 ひらE5月 1 User－setting 1 （0－599，99 s）
12 औらE「ヨ User－setting 2 （0－599，99 s）
13 引らE「日 3 User－setting 3 （0－599，99 s）
Function code F13，Display Row 1 ：ロロ～ロレ
Decimal point
0^{*}
$\ldots \ldots \ldots$
1
2 ․․․․ 2 decimal places
3
둔근 3 decimal places
4 ㄱ․․․․․ 4 decimal places
Function code F14，Display Row 1：FLR5H
Display flashes 0＊MaFL5H Noflashing
1
PI Flashes as long as P 0 is active
2
P Flashes as long as P 1 is active

Batch Counter

3 FI Flashes as long as $P 2$ is active

$$
4 \quad \square \square-1-\beth \quad \begin{aligned}
& \text { Flashes as long as one Preset is } \\
& \text { active }
\end{aligned}
$$

Function code F15，Display Row 1：I．L，mE

Display in
2nd row
Pת Preset 0

1
1
P Preset 1

2＊日月日日コ Preset 2

3 日日 P5：Prescaler

4 LRE E．L Batch counter or 2nd counter

Function code F16，Display Row 1：E TE5

External
0 FESEnL Only resets the counter
Reset
signal
1 FESLRE Only resets the batch counter

2＊FESRLL Resets all counters

Batch Counter

Function code F17，Display Row 1：PRTSE5

0＊RaFE5 Restores the counter value

Power On
Reset
1
FE5
Reset at Power On

Function code F18，Display Row 1 MULMEM

Output	0	－ロロ55	Restart signal time after power fail output switches
signal－			
Memory	1＊	（－G）	Do not restart signal time after po－ wer fail

Function code F19，Display Row 1：LREH［

Batch－	0＊	ロアヒロHロ	Batch counter
Counter			
or 2nd totalizer	1	コ「ロトア	2nd totalizer

Function code F22，Display Row 1：RPL 1 RP

Batch Counter

Applica－ tion in－
0 ア5「ロート Prescaler output put／ output

$$
1 \text { PMGロt Output Preset } 0
$$

2 』）RMロ Directional count output
3＊［nLGBCount input，adding
4 「пLロח Count input，subtracting
5 FESRLL Reset counter and Batch counter or 2nd totalizer
6 FESEME Resets only counter
7 FESロRL Resets only Batch counter or 2nd totalizer
8 5RLE Gate input
9 Lロロ Keylock input
10 HaLd Hold input（display memory）
11 EEREH Teach input Count value becomes P 2

Batch Counter

12 5EL Set－input（sets to Preset 0）

1
Should you have a counter with interface，the additional function codes F24－F27 are descri－ bed in the seperate manual for the interface version．

Function code F30，Display Row 15E5Lac $\begin{aligned} & \text { Lock Re－} \\ & \text { set key }\end{aligned} 0^{*}$ unlar Keyboard reset enabled

1 Lロー Keyboard reset locked／delayed

Lock	0^{*}	ロாLロロ	P 0 Setting enabled
Preset 0			
Setting	1	1ロ5	P 0 Setting locked

Function code F32，Display Row 1：F：LロE

Batch Counter

Lock	0＊	－	P 1 Setting enabled

Preset 1
Setting 1 LaI P 1 Setting locked／delayed

Function code F33，Display Row 1：Pコ吅

Lock	0＊	ロロレロロ	P 2 Setting enabled
Preset 2			
Setting	1	日日㲌吅	P 2 Setting locked／delayed

Function code F34，Display Row 1：P5［LaE

Lock
0＊unlar PSC Setting enabled
Prescaler
Setting

La PSC Setting locked／delayed

Function code F35，Display Row 1：FLロロRL
Lock
Mode $\quad 0^{*} \quad 1 \square \square 5[10$ seconds delay

1 Lロロ ${ }^{\text {d }}$ Completely locked
2 inflar Lock mode depends on Keylock input

Technical Data

10 Technical Data

General

Display	LCD reflective, Transflective positiv: black figures on back lighted ground Transmissive negativ: white, red or green figures on black ground 2 lines, counter reading/presettings 6-digits; decimal point (up to 4 decimals)
Digit hight	1st line 9.3 mm ; 2nd line 7.2 mm
View angle	12 o'clock
Supply voltage	SELV: 12-30 VDC; protected against polarity reversal SELV: 24 VAC, $50 / 60 \mathrm{~Hz}, \pm 10 \%$ 115 VAC; 230 VAC, $50 / 60 \mathrm{~Hz}, \pm 10 \%$ $100-240$ VAC; $50 / 60 \mathrm{~Hz}, \pm 10 \%$
Current consumption	12 ... 30 VDC < 200 mA , 12-30 VDC with backlight < 250 mA incl. sensor supply 24 VAC < 250 mA ; including sensor supply $115 / 230$ VAC $<50 \mathrm{~mA}$; incl. sensor supply 100-240 VAC $<80 \mathrm{~mA}$ at 90 VAC; incl. sensor supply
Power consumption	$\begin{aligned} & <5 \mathrm{~W} \\ & <8 \mathrm{~W} \text { switching power supply } \end{aligned}$
Duty cycle	100\%
Overload protection	external fuse DC: 0,16 AT (IEC 127); DC: 0,2 AT (UL 198) 24 VAC: $315 \mathrm{mAT} ; 230$ VAC: 32 mAT ; 115 VAC: 63 mA T 100-240 VAC G-safety insert $630 \mathrm{~mA} / 250 \mathrm{~V}$
Overload protection Relay output	external fuse $230 \mathrm{~V}, 2,5 \mathrm{AmT}$
Sensor supply	24/115/230 VAC AC-operation: 12-24 VDC (load dependent), max. 50 mA 90-260 VAC (switching power supply) AC-operation: 24VDC/-5\%, max. 115 mA max. capacitive load $=470 \mu \mathrm{~F}$

Technical Data

Storage of values	NV-memory > 10 years
Electrical connections	Plug-in screw-type connections / Terminals
Cable cross-section	$1 . . .1 .5 \mathrm{~mm}^{2}$ with wire-end sleeves
Amplitude threshold	$<2 \mathrm{~V}$ and $>8 \mathrm{~V}$ or $<1 \mathrm{~V}$ and $>4 \mathrm{~V}$ at TTL-level amplitude max. 40 VDC
Active edge	programmable positive for PNP-input, negativ for NPN-input
Input resistance	approx. 10 kOhm
Count frequency	max. 60 kHz (TTL 20 kHz): single-channel counting max. 60 kHz (TTL 20 kHz): Different. counting and totalizing channel ($\mathrm{A}+\mathrm{B}$ together) $\max .30 \mathrm{kHz}(T T L 20 \mathrm{kHz})$: phase discriminator single or double evaluation max. 15 kHz (TTL 15 kHz): phase discriminator, quadruple evaluation damped (attenuated) 30 Hz -> Please pay attention to graphics on page 116
Pulse form	any desired form (at max. frequency square 1:1)
Pulse duration min	$17 \mathrm{~ms}(30 \mathrm{~Hz}) ; 8 \mu \mathrm{~s}(60 \mathrm{kHz})$
Prescaler	0,0001-99,9999
Reset	manual reset via keyboard external reset static or dynamic programmable pulse length min. 5 ms , automatic reset after reaching Preset 2, (No pulse losses at max. counter frequency due to automatic reset function). via application input (programmable) and programmable Power-On Reset
Set function	Setting to Preset 0 (independent of reset)
Display and Preset Range	- 999999 up to + 999999

Technical Data

Warning signal	Display flashes when preset 0,1 or 2 are active
Signal times	0,01 s to 599,99 s or bistable programmable tolerance +10 ms active On or Off
Relay Output for $P 1$ and $P 2$	Change-over contact max. 250 VAC / 30 VDC / 5 A Change-over contact min. 5 VAC / 5 VDC / 10 mA delay < 10 ms
Transistor Output for P 1 and $P 2$	PNP-output 12-30 VDC max. 50 mA at DC-supply $12-24$ VDC max. 30 mA at AC-supply (24/115/230 VAC) 24 VDC, max 50 mA at AC-supply with switching power supply
Application Output	PNP-output 12-30 VDC max. 20 mA at DC supply $12-24$ VDC max. 20 mA at AC supply (24/115/230 VAC) 24 VDC max. 20 mA at AC-supply with switching power supply

!
Only for trafo-power-supply:
Current load of the outputs (Sensor 12-24 VDC, Out 1, Out 2, Application-Output) is not allowed to exceed 65 mA in sum.

Counter

Counter mode of	
operation Input A,B	Unidirectional; adding or subtracting; directional input; Differential operation, add / sub; Summation (Totalizing) add / add; Phase discriminator single, double or quadruple evaluation
Control Input	Reset; Gate
Preselect Mode	Absolute or trail, Range signal /limit values (sign. 1 < P1, sign. 2 > P 2)
Application In- put/Output	Output: Prescaler-out, Preset 0-out, Direction-out Input: addtl. counter input add / sub, Reset, Set, Gate, Keylock, Hold, Teach in

Batch Counter

Mode Batch counter with Preset or 2nd totalizer with Preset

Shift Counter

Counter Mode Differential counting add/sub, totalizing add/add
of Operation

Tachometer

Measuring Principle	Period (cycle) measurement (1/Tau)
Time base	$1 / \mathrm{min}$ or $1 / \mathrm{s}$
Min. frequency	1 Hz or $0,1 \mathrm{~Hz}$
Limit values pression	2 alarms with programmable startup sup +1 additional upper limit value on the application output
Tachometer mode of operation	Unidirectional add oder sub; directional input;Differential add / sub; totalizing add / add; Phase discriminator single, double or quadruple evaluation, A / B or (A-B) / A \%
Application Input/Output	Output: Preselect 0-out, Direction-out Input: addtl. counter input add / sub, Keylock, Hold, Teach in
Accuracy of the tachometer function	Time base: $\pm 30 \mathrm{ppm}$ Measuring principle: Periodic measurement Measuring time: $\quad \min .0,5 \mathrm{~s} /$ max. 1 s oder 10 s Measuring resolution: $0,4 \mu \mathrm{~s}(<30 \mathrm{ppm})$ Display resolution: 4 decimal places, 1 Digit $=100 \mathrm{ppm}$
Overall tolerance	$=$ Shown resolution + tolerance of timebase $=130 \mathrm{ppm}$

Technical Data

Timer

Measuring Principle Pulse-width or cycle duration measurement Start Inp. A + Stop Inp. B; Start/Stop key

Time base Programmable in sec, min, h or hh.mm.ss
Resolution $\quad 1 ; 0,1 ; 0,01 ; 0,001 ; 0,0001$
Function Single-pulse or cumulative measurement
$\begin{array}{ll}\text { Application In- } & \text { Output: Preselect 0-out } \\ \text { put/Output } & \text { Input: addIt. Run, Stop, Reset, Set, Keylock, Hold, Teach in }\end{array}$

Accuracy of	Time base: the timer	Start / Stop-point in time: damped)
	Resolution:	$16 \mu \mathrm{spm} / 16 \mathrm{~ms}$ (not damped /
	Res	

Overall tolerance $\quad=$ Shown resolution + tolerance of timebase $=130 \mathrm{ppm}$

Environmental conditions / Safety Rules

General design	EN 61010-1 / IEC 61010-1
Protection Class	II; EN 61010-1 / IEC 61010-1
Pollution degree	V 2, EN 50178
EMC - Interference immunity	EN 61326-1 industrial environment *
EMC - Emission	EN 61326-1 Class B *
Ambient temperature	$0^{\circ} \ldots 50^{\circ} \mathrm{C}$ EN 60 068-2-1/2 $0^{\circ} \ldots 45^{\circ} \mathrm{C}$ with block assembly $0^{\circ} \ldots 50^{\circ} \mathrm{C}$ in single row assembly
Storage temperature	- $20^{\circ} \ldots+65^{\circ} \mathrm{C}$ EN 60 068-2-1/2
Climate	$40^{\circ} \mathrm{C} / 93 \%$ rel hum. class 4 K 4 H , EN 60 068-2-78 $25-50^{\circ} \mathrm{C} / 93 \%$ rel hum., cyclic, EN 60 068-2-38
Altitude	up to 2000 m

Degree of protection	IP 65 front side; EN 60529 IP 20 terminals
Vibration resistance	$10 \mathrm{~m} / \mathrm{s}^{2}(10 \ldots 150 \mathrm{~Hz})$; EN 60 068-2-6
Shock resistance	$100 \mathrm{~m} / \mathrm{s}^{2}$ (18 ms); EN 60 068-2-27
Resistence to chemicals	Frontfoil acc. to DIN 42 115-2
Approvals	UL, CSA: E 338588
RoHS	compliant

Mechanical Data

Installation	Front-panel installation with tenter (frame) Front panel thickness max. 11 mm
Dimensions	$48 \mathrm{~mm} \times 48 \mathrm{~mm} \times 118 \mathrm{~mm}$, installation depth 110 mm DIN 43700
Front-panel cutout	$45 \mathrm{~mm} \times 45 \mathrm{~mm}+0,3 \mathrm{~mm}$
Weight	approx. 200 g

[^0]Technical Data

Counting frequency according to signal voltage - VersaCount 77x

Transport, Packaging, Storage

11 Transport, Packaging, Storage

8

 Note! Damage may be caused by improper transport! Improper transport may cause considerable damage. Do not remove the packaging before assembly and installation.The packaging offers ideal protection against mechanical damage and loss of single parts, such as the plugs or operating instructions. Therefore, do not take the multifunctional counter out of its packaging until you actually have to start your assembly and installation work.

Inspect the shipment for completeness and possible signs of transport damage immediately after receipt.

12 Maintenance and cleaning

The multifunctional counter does not require any maintenance.
The front side may be cleaned with commercially available household detergents.

For protection against pollution, a transparent, flexible protection cover is available as accessory (see chapter 17). With this protection cover, the counter display can be read and the buttons can be used.

Malfunctions
 13 Malfunctions

$!$

Warning!
 Danger of injuries due to improper fault correction! Improper fault correction may cause serious damage or personal injury.

The machine/plant manufacturer is responsible for the preparation of operating instructions or a description stating the potential errors and the appropriate corrective action, as well as potential hazards and the behavior in the event of malfunctions. This is dependent on the design concept and construction of the machine or plant.

The first step is to determine if the cause of an error or malfunction implies a possible fault of the multifunction counter.

Overview of Errors

Error	Possible cause	To be corrected by:
Display re- mains dark	Machine/plant not powered on	Operator
	Defective voltage supply	Qualified electrician
Value is not stored	Power-on reset is active (F17)	Skilled personnel
Counter/ tachometer does not count	Defective signal generator; Counter does not receive any counting signals	Skilled personnel
Adjusted to incorrect mode of ope- ration (F1), Single-channel, direc- tional input, differential counting, phase discriminator	Skilled personnel	
	Incorrect adjustment of PNP/NPN logic and input level (F3)	Skilled personnel

Malfunctions

	High-level does not exceed the up- per amplitude threshold; low-level does not fall below the lower amp- litude threshold	Qualified electrician
	Continuous reset signal is applied	Qualified electrician
	Continuous gate signal is applied	Qualified electrician
Incorrect counting of counter/ tachometer	Prescaler value is not correct Phase discriminator - edge evalua- tion not correctly adjusted (F2)	Skilled personnel
	Input frequency too high (F4)	Skilled personnel personnel
Keyboard Re- set not possi- ble	Keys are locked (F30 + F35)	Skilled personnel
Presetting not possible	Keys are locked (F31, F32, F33 + F35)	Skilled personnel
Prescaler ad- justment not possible	Keys are locked (F34+ F35)	Skilled personnel
Signal 0, 1 or 2 not received	Signal deactivated (F10, F11, F12)	Skilled personnel
	User signal time adjusted to 0,000	Skilled personnel

Spare Parts / Dismantling and Disposal

 14 Spare Parts$!$

Warning!
 Danger due to faulty spare parts!

The use of incorrect or faulty spare parts may cause damage, malfunction or even total breakdown and safety hazards. Therefore, please make sure only to use the original spare parts provided by the manufacturer.

The multifunctional counter may only be opened by the manufacturer. Exclusively outer components are available as spare parts.

The order numbers are given in Chapter 17.

15 Dismantling and Disposal

After reaching the end of its useful life the multifunctional counter has to be disposed of or recycled according to the applicable environmental protection rules.

Ordering Information

16 Ordering Information

Display LCD	Relay	$12-30$ VDC	24 VAC	115 VAC	230 VAC	$100-240$ VAC
reflective	1	VC772-101	VC772-111	VC772-121	VC772-131	VC772-141
reflective	2	VC772-102	VC772-112	VC772-122	VC772-132	VC772-142
transflective positive	1	VC772-201	-	-	-	VC772-241
transflective positive	2	VC772-202	-	-	-	VC772-242
transmissive white	1	VC772-301	-	-	-	VC772-341
transmissive white	2	VC772-302	-	-	-	VC772-342
transmissive red	1	VC772-401	-	-	-	VC772-441
transmissive red	2	VC772-402	-	-	-	VC772-442
transmissive green	1	VC772-501	-	-	-	VC772-541
transmissive green	2	VC772-502	-	-	-	VC772-542

Reflective:
Transflective positive: black figures on back lighted ground
Transmissive white: white figures on black ground
Transmissive red: red figures on black ground
Transmissive green: green figures on black ground

Accessories

17 Accessories
Adapter front panel

Order no.

G1405675

G1405676
$72 \times 72 \mathrm{~mm}$
$125 \times 60 \mathrm{~mm}$
G1405679

Front panel cutout
$55 \times 55 \mathrm{~mm}$
$68 \times 68 \mathrm{~mm}$
$106 \times 55 \mathrm{~mm}$
for installation of 2
counters 48×48
protection cover G2772052
(tenter) frame
G1721004
$48 \times 48 \mathrm{~mm}$

Danaher Sensors and Controls Specialty Products 2100 West Broad Street | Elizabethtown NC, 28337
1-800-390-6405 | www.vr-versacount.com

[^0]: * For cable length > 30 m , for connection to a DC-supply-network and input level TTL an additional protection circuit is necessary.

